top of page

Technology Tuesday: August 8

molecules

Welcome to Technology Tuesday! On Tuesdays, The Job Shop Blog brings you our 5 top science and technology news stories from around the web.

This week: A new theory on the origin of life picks up steam, a cure for diabetes, the first successful gene editing for a US embryo, a one touch healing device, and spinal injury repairs with brain chips.


 

This New Theory Elegantly Explains the Origin of Life

origin

How did life first originate from nothing? This has been the focus of biologists, specifically astrobiologists, and popular theories have included everything from meteorites to seemingly random chemicals to luck. In 1859, Charles Darwin posited that “All organic beings that have lived on Earth could be descended from some primordial form,” in The Origin of Species. His basic idea was that chemical components and energy sources somehow spontaneously generated life in the primordial soup.

However, in 2013, MIT biophysicist Jeremy England proposed a new theory that substituted thermodynamics in place of luck. He derived a mathematical formula to explain how atoms, driven by external energy (such as that found in primordial soup) and heat (like you’d find in an atmosphere), will gradually restructure themselves to dissipate more and more energy. In other words, under the right conditions, matter naturally acquires the basic physical quality — the tendency to capture energy from the environment and dissipate it as heat — associated with life, based on the law of increasing entropy or the second law of thermodynamics, also called the “arrow of time.”

READ MORE

 

Scientists Move Closer to a Cure for Diabetes

insulin

The World Health Organization reports that more than 422 million people worldwide are living with diabetes, a condition that can take two forms. In the first, the body’s immune system attacks cells in the pancreas, preventing the organ from producing enough insulin [type 1 diabetes (T1D)]. In the second, the body doesn’t know how to use the insulin that is produced [type 2 diabetes (TD2)].

T1D accounts for roughly 10 percent of diabetes cases, and unlike T2D, which can often be reversed through lifestyle changes such as weight loss or increased exercise, scientists have yet to figure out how to prevent or cure T1D.

READ MORE

 

Correcting “Mutant Genes” with Gene Editing

mutant

Last week, reports circulated  that doctors had successfully edited a gene in a human embryo — the first time such a thing had been done in the United States. The remarkable achievement confirmed the powerful potential of CRISPR, the world’s most efficient and effective gene-editing tool. Now, details of the research have been published in Nature.

The procedure involved “correcting” the DNA of one-cell embryos using CRISPR to remove the MYBPC3 gene. That gene is known to cause hypertrophic cardiomyopathy (HCM), a heart disease that affects 1 out of 500 people. HCM has no known cure or treatment as its symptoms don’t manifest until the disease causes sudden death through cardiac arrest.

READ MORE

 

New Device Heals Damaged Tissue with Just One Press

heal

Science fiction has often featured technology that’s capable of healing wounds and injuries almost instantly. Such devices could be found in the medical bay of any interstellar ship. Well, now you don’t have to look any farther than Columbus, Ohio, where researchers from the Wexner Medical Center at the Ohio State University have developed a device capable of repairing organs with a single touch.

The chip is put at the surface of the skin, where it uses a technology called Tissue Nanotransfection (TNT) to input a certain genetic code into the skin cells. These turn the skin cells into the type of cell needed to treat a specific injury or condition. By applying a small electrical current, DNA or RNA are injected into the cells, which are then biologically reprogrammed to morph into the kind of cell most needed in situ.

READ MORE


 

Spinal Injuries Could Be Cured With a Brain-Computer Interface

BCI

Neural signal processing difficulties are what cause the loss of mobility in the limbs. Spinal cord injuries can cause these kinds of neural signal troubles, as can other issues such as muscular dystrophy, drug overdose, stroke, and neuropathy. In the case of spinal cord injuries, the brain sends a clear signal and the muscles in the limbs are capable of receiving them, but the damage to the spinal cord prevents the signals from getting through.

The Center for Sensorimotor Neural Engineering (CSNE) — a collaborative effort between researchers from San Diego State University, the Massachusetts Institute of Technology (MIT), and the University of Washington (UW) — is developing an implantable brain chip to bypass the problem in the spinal cord. The chip records neural electrical signals and then sends them directly to receivers in the limbs, restoring movement. That’s already an impressive achievement, but recently the team published a study describing a critical improvement: a brain-computer interface (BCI) that could allow the chip to send stronger signals that would lead to longer lasting movement capability in the body.


READ MORE



 


4 views0 comments

Recent Posts

See All
bottom of page